
1023_1_Product_Manual created: 09/26/07	 Page 1

PhidgetRFID

Operating Systems:
Windows 2000/XP/Vista, Windows CE, Linux, and Mac OS X

Application Programming Interfaces (APIs):
Visual Basic, VB.NET, C, C++, C#, Flash 9, Flex, Java, LabVIEW, and Matlab

Examples:
You will find program examples in the download section of www.phidgets.com

1023_1_Product_Manual created: 09/26/07	 Page 2

What Can the PhidgetRFID Do?

The PhidgetRFID allows you to read unique identification strings stored within
RFID tags. It provides a generic, convenient way to use your PC for Radio
Frequency IDentification.

RFID Tags

The PhidgetRFID can be used with any RFID tag designed for the EM4102
protocol. RFID tags come in a variety of shapes and sizes to suit various
applications. All RFID tags sold by Phidgets are guaranteed to be unique, and
are available as:

30mm Disc Tags (these can be sewn into garments, attached to objects)•	

Credit Card Sized Tags (good for security identification applications)•	

Key Fob Tags (attach easily to key rings)•	

Visit www.phidgets.com for more information.

1023_1_Product_Manual created: 09/26/07	 Page 3

Getting Started

Installing the hardware

Connect the PhidgetRFID board to the computer using the USB cable.1.	

The kit contains:

A PhidgetRFID•	

A USB Cable•	

You will also need:

A compatible RFID tag•	

1

1023_1_Product_Manual created: 09/26/07	 Page 4

Testing the PhidgetRFID using Windows

Note that some examples are not available for Linux, Mac OSX or Windows CE.•	

Make sure that you have installed the libraries and decompressed your example file.•	

Download and Install the software

Go to www.phidgets.com >> downloads

Select your operating system (Windows, Linux, MAC OS)

Select the language you want to use and download the appropriate examples and Libraries.

Install the Libraries and decompress the Example file.

Run the program Manager-full to make sure that the PhidgetRFID is properly connected to
your PC.

1023_1_Product_Manual created: 09/26/07	 Page 5

Run the program 1.	 RFID-full and check that the box labelled Attached contains the word
True.

Click on the Antenna Enabled box to enable the antenna.2.	

Click on the LED Enabled box to turn the LED on.3.	

The Output 0 box controls the +5V digital output and the Output 1 box controls the 4.	
external LED digital output.

Bring an RFID tag close to the PhidgetRFID board and check that the identification string 5.	
is displayed. Make sure that the Antenna is enabled for this step.

1

2

3

4

5

1023_1_Product_Manual created: 09/26/07	 Page 6

Programming a Phidget

Where to get information

Go to •	 www.phidgets.com >> downloads

Select the Operating System and the language you want to use.•	

Download the appropriate API manual and read the section under the •	 RFID heading.

Have a look at the source code of the •	 RFID-full program.

Have a look at the C# example below.•	

Modify an existing program or write your own program from scratch.•	

Simple example written in C#

/* - RFID simple -

 * This program simply displays the data that is generated by an RFID phidget in a very simple case and outputs

 * it to the console. This simple example covers the basics of connecting and using an RFID phidget. For a

 * more detailed example, see RFID-full.

 *

 * Please note that this example was designed to work with only one Phidget RFID connected.

 * For an example using multiple Phidget RFIDs, please see a “multiple” example in the RFID Examples folder.

 *

 * Copyright 2007 Phidgets Inc.

 * This work is licensed under the Creative Commons Attribution 2.5 Canada License.

 * To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ca/

 */

using System;

using System.Collections.Generic;

using System.Text;

using Phidgets; //Needed for the RFID class and the PhidgetException class

using Phidgets.Events; //Needed for the phidget event handling classes

namespace RFID_simple

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 RFID rfid = new RFID(); //Declare an RFID object

 //initialize our Phidgets RFID reader and hook the event handlers

 rfid.Attach += new AttachEventHandler(rfid_Attach);

 rfid.Detach += new DetachEventHandler(rfid_Detach);

 rfid.Error += new ErrorEventHandler(rfid_Error);

 rfid.Tag += new TagEventHandler(rfid_Tag);

 rfid.TagLost += new TagEventHandler(rfid_TagLost);

 rfid.open();

 //Wait for a Phidget RFID to be attached before doing anything with the object

 Console.WriteLine(“waiting for attachment...”);

 rfid.waitForAttachment();

 //turn on the antenna and the led to show everything is working

1023_1_Product_Manual created: 09/26/07	 Page 7

 rfid.Antenna = true;

 rfid.LED = true;

 //keep waiting and outputting events until keyboard input is entered

 Console.WriteLine(“Press any key to end...”);

 Console.Read();

 //turn off the led

 rfid.LED = false;

 //close the phidget and dispose of the object

 rfid.close();

 rfid = null;

 Console.WriteLine(“ok”);

 }

 catch (PhidgetException ex)

 {

 Console.WriteLine(ex.Description);

 }

 }

 //attach event handler...display the serial number of the attached RFID phidget

 static void rfid_Attach(object sender, AttachEventArgs e)

 {

 Console.WriteLine(“RFID reader {0} attached!”, e.Device.SerialNumber.ToString());

 }

 //detach event handler...display the serial number of the detached RFID phidget

 static void rfid_Detach(object sender, DetachEventArgs e)

 {

 Console.WriteLine(“RFID reader {0} detached!”, e.Device.SerialNumber.ToString());

 }

 //Error event handler...display the error description string

 static void rfid_Error(object sender, ErrorEventArgs e)

 {

 Console.WriteLine(e.Description);

 }

 //Print the tag code of the scanned tag

 static void rfid_Tag(object sender, TagEventArgs e)

 {

 Console.WriteLine(“Tag {0} scanned”, e.Tag);

 }

 //print the tag code for the tag that was just lost

 static void rfid_TagLost(object sender, TagEventArgs e)

 {

 Console.WriteLine(“Tag {0} lost”, e.Tag);

 }

 }

}

Learning more ...
check out the •	 forums

check out the Phidgets projects •	

1023_1_Product_Manual created: 09/26/07	 Page 8

Technical Section

RFID

RFID (radio frequency identification)
systems use data strings stored
inside RFID tags (or transponders) to
uniquely identify people or objects when
they are scanned by an RFID reader.
These types of systems are found in
many applications such as passport
protection, animal identification,
inventory control systems, and secure
access control systems.

RFID Protocols

In order for an RFID reader like the
PhidgetRFID to communicate with an RFID tag, they must share a common protocol. This
protocol acts as a set of rules for the way data is transmitted wirelessly between the reader
and tag. The PhidgetRFID (as well as RFID tags sold by Phidgets) uses the EM4102 protocol.
Any other tags that also use the EM4102 protocol can be used with the PhidgetRFID.

Communication and Effectiveness

RFID tags come in two main varieties: passive and active. Active tags have their own power
supply which they use to power an antenna to communicate and transmit data. Passive tags
derive the power they require to operate directly from the RF output of the RFID reader, and
no other power supply is necessary. This makes passive tags cheaper to produce and easier
to implement.

Because passive tags require a strong RF field to operate, their effective range is limited to an
area in close proximity to the RFID reader. In the case of the PhidgetRFID, tags brought within
approximately 3” of the reader can be read. The distance over which the RFID tag is usable
is affected by such things as the tag shape and size, materials being used in the area near
the reader, and the orientation of the reader and tag in respect to each other and in their
operating environment. The smaller a tag, the closer it must be to the reader to operate.

Multiple Readers

Multiple PhidgerRFIDs within 1 to 2 meters may
interfere with eachother. This can be overcome
in software by enabling the antennae of individual
PhidgetRFID readers in sequence.

Starting with all readers disabled, enable the 1.	
antenna of the first PhidgetRFID reader.

Wait for 100ms or more to detect any tags.2.	

Disable the antenna of the first reader and enable 3.	
the antenna of the second, and perform another
wait cycle.

1023_1_Product_Manual created: 09/26/07	 Page 9

Multiple Tags

The PhidgetRFID offers no capability for collision detection or collision avoidance. If two tags
are brought within the read field of a PhidgetRFID reader at the same time, neither tag will be
read. An RFID tag should be removed from the read field before a second tag is introduced.

Controlled Outputs

The PhidgetRFID has four outputs - two of which are available to the user, and two of which
are for internal control of the Phidget board only.

Output 0 is a +5V source from the USB bus through a P-Channel MOSFET with less than one
ohm impedance. This can be used to switch a TTL or CMOS device, or it can be used to drive
a 5VDC relay such as the Aromat JS1-5V. Output 1 is an LED drive output at 5VDC with
approximately 20mA of available current (250 ohm CMOS output). Both Output 0 and 1 are
available in hardware at the terminal blocks on the PhidgetRFID board. If Output 0 is used to
drive a relay, a fast clamping diode must be placed across the relay drive pins as shown in the
diagram below. Not doing so can result in permanent damage to the PhidgetRFID board.

The PhidgetRFID comes equipped with an on-board LED that can be controlled using the
LED property in software. Additionally, the on-board antenna can be enabled or disabled in
software by using the RF Enable property. The antenna must be enabled for the PhidgetRFID
to detect and read an RFID tag.

Output Function Connection
0 +5VDC Source Terminal Block
1 External LED Drive Terminal Block

LED Internal LED Drive Internal Only

RF Enable RF Antenna Enable Internal Only

5VDC RELAYPhidgetRFID

5VG

1023_1_Product_Manual created: 09/26/07	 Page 10

Antenna Output Power (max, far field) < 10 µW
Antenna Resonant Frequency 125kHz - 140kHz
Effective Read Range (typ) 3”
Communication Protocol EM4102
Read Update Rate 30 updates / second

External +5V Supply Voltage 5VDC
External +5V Supply Current Limit 400mA
External LED Supply Voltage 5VDC
External LED Supply Current Limit 16mA
External LED Output Resistance 250 Ohms

Recommended Terminal Wire Size 16 - 26 AWG
Terminal Wire Strip Length 5 - 6mm (0.196” - 0.236”)

USB-Power Current Specification 500mA max
Device Quiescent Current Consumption 16mA
Device Active Current Consumption 100mA max

Device Specifications

Mechanical Drawing
1:1 scale

1023_1_Product_Manual created: 09/26/07	 Page 11

Product History

Date Product Revision Comment
June 2002 DeviceVersion 100 Product Release.
April 2004 DeviceVersion 200 Onboard LED, 2 Digital Outputs added. Ability to enable/

disable Antenna added.
Jan 2005 DeviceVersion 201 RF Circuitry upgraded to improve reliability.
Jan 2006 DeviceVersion 202 Onboard microprocessor upgraded to Flash version.
Jun 2006 DeviceVersion 204 Low Voltage Reset set at 4.7 Volts
April 2007 PCB Rev 0,

DeviceVersion 205
Protocol parsing bug fixed which garbled top 3 bits of RFID
Tag.

July 2007 PCB Rev 1,
DeviceVersion 206

Unused internal I/O pulled high out of an abundance of
caution, bus current characterized. Terminal block moved
to edge of PCB, center of antenna routed out, digital
output transients on startup eliminated.

